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We discuss algorithms for lattice-based computations, in particular lattice reduction, the
detection of nearest neighbors, and the computation of clusters of nearest neighbors. We
focus on algorithms that are most efficient for low spatial dimensions (typically d ¼ 2;3)
and input data within a reasonably limited range. This makes them most useful for phys-
ically oriented numerical simulations, for example of crystalline solids. Different solution
strategies are discussed, formulated as algorithms, and numerically evaluated.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Scientific computing often involves lattices and algorithms operating on them. For example, the atoms in a crystalline
solid are arranged in the form of a lattice, and numerical codes that simulate the behavior of such crystals need to perform
many operations on this lattice. This includes the identification of all atoms within a given radius of a lattice site for energy
and force calculations and the location of the nearest lattice site to an arbitrary point. In particular, the current work was
motivated by lattice algorithms needed for the quasicontinuum (QC) method [13–15]. Lattices are also used in other physical
applications, such as the Ising model [9], lattice Monte Carlo [7], lattice protein folding algorithms [16], as well as in more
abstract settings, such as integer linear programming problems in operations research, lattice-based cryptography and com-
munication theory [1].

Lattice algorithms and their computational complexity have been intensively studied from the algebraic point of view.
This resulted in the development of highly-sophisticated algorithms that have good scaling properties as the spatial dimen-
sion d gets large or the lattice gets highly distorted. For an overview of such lattice algorithm, see, e.g., [1,6]. A more general
classical reference for lattices and their properties is [2]. However, these sophisticated algorithms are not always optimal for
many applications that are oriented more towards physics or engineering, where the spatial dimension d is typically low
(mostly d ¼ 2;3), and lattice distortions are typically limited to a physically-relevant range so that the scaling properties
. All rights reserved.
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of the algorithms do not come into play. In these cases, simpler approaches that are significantly easier to implement can be
superior to the more sophisticated techniques.

This paper describes lattice algorithms that are tailored to practical physical applications in numerical simulation and
evaluates their performance on a set of test problems. The authors feel that there is a gap between the mathematically com-
plex algorithms mentioned above and the naive ‘‘brute-force” approaches that are often used in practical applications. The
purpose of this paper is to fill this gap for certain common lattice problems and to make algorithms readily-available for
application.

We deal with three problems: lattice reduction, detection of nearest lattice sites, and computation of clusters of nearest
neighbors. As noted above, this study was motivated by the QC method, nevertheless, these problems have been formulated
in a general way to make them applicable and useful for a large variety of applications. We consider both simple lattices and
multilattices, also called ‘‘lattices with a basis”, which correspond to a set of inter-penetrating simple lattices.

A key starting point for many algorithms is a suitable lattice reduction that determines an optimal set of lattice vectors
that can considerably accelerate subsequent operations. In Section 2, we discuss two variants of lattice reduction: the clas-
sical LLL reduction [8] that provides approximate, globally-optimized lattice vectors and a pairwise reduction approach that
results in lattice vectors that are pairwise optimal but not necessarily globally optimal. The advantages and disadvantages of
these approaches are discussed. Numerical studies of their performance appear in subsequent sections where they are incor-
porated into other algorithms.

Section 3 deals with the detection of nearest lattice sites, also known as the closest vector problem, for both simple lat-
tices and multilattices. We discuss two strategies: a naive brute-force algorithm and a new approach which we refer to as the
short-list algorithm. The latter is based on investing some computation time in advance to determine a small set of candidate
lattice sites that is subsequently used to speed up the actual process of neighbor detection. This is advantageous when multi-
ple lattice sites need to be detected for the same lattice structure. Both algorithms are evaluated numerically.

In Section 4, we discuss the computation of clusters of nearest neighbors, i.e., determination of the set of all lattice sites
within a given radius of a specified lattice site for both simple lattices and multilattices. This can be seen as a variation of the
closest vector problem in which only the single nearest lattice site is detected. We discuss and numerically assess the per-
formance of two strategies that we developed: the shell algorithm and the on-the-fly algorithm.

Concluding remarks are given in Section 5. The appendix contains proofs and technical details omitted from the main text
in order not to interrupt the flow of reading.

2. Lattice reduction

A simple lattice L in d-dimensional space is an infinite discrete set of points that are integer linear combinations of lattice
vectors, ai 2 Rd, for i ¼ 1; . . . ; d,1
1 fAn
similar
L ¼
Xd

i¼1

aini : ni 2 Z

( )
¼ fAn : n 2 Zdg: ð1Þ
In the second term, we subsume the lattice vectors as the column vectors of the matrix A 2 Rd�d, i.e., A ¼ ða1 � � �adÞ. To avoid
degenerate lattices, we require the lattice vectors ai to be linearly independent, or equivalently the matrix A to be invertible.

The lattice definition in (1) is not unique because the lattice vectors are not uniquely determined. Two lattices spanned by
A and �A coincide,
fAn : n 2 Zdg ¼ f�An : n 2 Zdg; ð2Þ
if and only if the matrix M ¼ A�1 �A is unimodular, i.e., M and its inverse M�1 ¼ �A�1A are integer matrices, or equivalently if M
is an integer matrix with determinant �1, i.e., jdet Mj ¼ 1.

As an example, consider the sheared square lattice spanned by
a1 ¼
1
0

� �
; a2 ¼

c

1

� �
ð3Þ
for some c 2 R. The same lattice is also spanned by
�a1 ¼
1
0

� �
; �a2 ¼

2þ c
1

� �
; ð4Þ
as shown in Fig. 1. We have
A ¼
1 c

0 1

� �
; �A ¼

1 2þ c

0 1

� �
: ð5Þ
: n 2 Zdg denotes the set of all vectors of the form An that is restricted by the colon notation to all vectors An for which n is an integer vector, n 2 Zd . A
notation is used throughout the paper. Note that bold uppercase letters denote matrices, and that bold lowercase letters denote vectors.
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Fig. 1. Freedom in choosing lattice vectors. The lattice vectors ða1;a2Þ and ð�a1; �a2Þ both span this two-dimensional lattice.
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Here we see that
M ¼ A�1 �A ¼
1 2
0 1

� �
; M�1 ¼ �A�1A ¼

1 �2
0 1

� �
; ð6Þ
are both integer matrices, and that detM = 1.
The freedom in choosing different lattice vectors for the same lattice can be used to speed up certain lattice algorithms

such as finding nearest lattice sites (Section 3) or constructing clusters of lattice sites (Section 4). The process of obtaining
‘‘optimal” lattice vectors for a given lattice is called lattice reduction. Different lattice reduction algorithms adopt different
objectives for optimizing the lattice vectors. A common objective is minimizing the length of the lattice vectors. Another
one is keeping the angles between pairs of lattice vectors as close to 90� as possible.

A prominent algorithm for lattice reduction is the LLL algorithm developed by Lenstra et al. [8]. It is based on a Gram–
Schmidt orthogonalization of the lattice vectors where the coefficients are rounded to an integer so that the spanned lattice
does not change. Additionally, vectors are swapped during the orthogonalization process. Upon completion of the LLL algo-
rithm, the reduced lattice vectors fulfill the condition
Yd

i¼1

kaik 6 2dðd�1Þ=4jdet Aj; ð7Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where kxk ¼
Pd

i¼1x2
i denotes the Euclidean norm of the vector x 2 Rd. The determinant of A is equal to the volume of the

lattice unit cell and is independent of the specific lattice vectors. Note that for any lattice we have
jdet Aj 6
Yd

i¼1

kaik ð8Þ
by the Hadamard inequality with equality satisfied if and only if the lattice vectors are orthogonal. Property (7) states that
the volume deviates from the product of the lattice vector lengths only by a constant factor and therefore constitutes a cer-
tain measure of orthogonality of the LLL-reduced lattice vectors.

The LLL algorithm achieves a global lattice reduction, i.e., the reduced lattice fulfills the optimality condition (7) which
involves all lattice vectors at the same time. However, it does not in general produce lattice vectors that are pairwise shortest
or whose angles are pairwise closest to 90�. In the following, we derive a lattice reduction algorithm based on pairwise
length reduction and show that it is equivalent to a pairwise reduction based on orthogonality. We thus refer to this ap-
proach as the pairwise reduction (PW) algorithm.

Consider the lattice vectors a1;a2; . . . ;ad. The corresponding lattice remains unchanged if we replace ai by ai �maj where
m is an integer and i–j, as this is a change of lattice vectors of the type described in (2), where M ¼ I except for Mji ¼ �m. We
choose m such that the length of kai �majk is minimal among all integers m. This leads to
m ¼ round
ai � aj

kajk2

 !
; ð9Þ
where the rounding is done towards the nearest integer (or, precisely speaking, any nearest integer if it is not unique). For a
reason to be discussed later, we require that the rounding is always done towards zero whenever the argument is an integer
plus half, i.e.,
roundðxÞ ¼ signðxÞdjxj � 1
2e ¼

x� 1
2

� �
if x P 0;

xþ 1
2

� �
if x < 0:

(
ð10Þ
Here dxe and bxc denote the smallest integer that is greater than or equal to x (ceiling operation) and the largest integer that is
smaller than or equal to x (floor operation), respectively. For vector arguments, x 2 Rd, the rounding is meant component-wise,
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ðroundðxÞÞi ¼ roundðxiÞ. It can be proved that the new vector ai �maj with m defined in (9) is shortest among all m 2 Z, and
additionally that it is the vector whose angle with aj is closest to 90�, see Lemma A.1 in the appendix. This means that our
particular choice of m makes the vector both shortest and as orthogonal to aj as possible. This technique of reducing a pair
of vectors originally goes back to Gauss [5, Article 171].

We use this technique to define the PW algorithm given in Algorithm 1. In this algorithm, we make use of the fact that if
some vector al is already length-reduced by some shorter vector as, then the shorter vector as is automatically length-re-
duced by the longer vector al. See Lemma A.2 in the appendix for the precise statement and the proof. This saves one half
of the reduction operations.

Algorithm 1. Pairwise lattice reduction (PW).
Input: lattice vectors a1; . . . ;ad

do
terminate :¼ true
for i :¼ 1; . . . ; d� 1

for j :¼ iþ 1; . . . ; d

if kaikP kajk

l :¼ i; s :¼ j
else

l :¼ j; s :¼ i
m :¼round ððal � asÞ=kask2Þ
if ðm–0Þ

al :¼ al �mas

terminate :¼ false
while (terminate = false)
Output: reduced lattice vectors a1; . . . ;ad
Due to the special definition in (10) of the rounding function it can be shown that whenever m–0 in some step, the length
of the corresponding vector al is in fact reduced by a positive amount and never stays the same, which could lead to a never-
ending alternating algorithm. Hence the sum

Pd
i¼1kaik is strictly decreasing as long as at least one coefficient m–0. Because

of the discreteness of the lattice, the algorithm always terminates after a finite number of steps.

Algorithm 1 concludes with a set of lattice vectors that are pairwise reduced according to both length and angle. This
means that subtracting an integer multiple of one vector from another vector never reduces its length or brings the angle
closer to 90�. However, it can be shown that this is not a global property, i.e., subtracting two or more integer multiples
at the same time could lead to an improvement. Obtaining a set of lattice vectors which is globally reduced in this sense
is a considerably more difficult task, and to the best knowledge of the authors, no efficient algorithm for arbitrary space
dimension d exists that does so.

It is worth noting that the technique used here is similar to the Euclidean Algorithm for finding the greatest common divi-
sor (gcd) of two positive integers. This similarity is due to the fact that both lattice vectors and gcd share the same structure
of invariance; two positive integers ni;nj have the same gcd as �ni; �nj if and only if
ðni njÞ ¼ ð�ni �njÞM ð11Þ
for some unimodular matrix M; compare this to (2).
Finally, an estimate of the computational complexity of the LLL algorithm was derived in [8] for the case of lattice vectors

with integer components. It was shown that the running time of the algorithm is Oðd4 log BÞ, where B ¼maxijaij2 is an upper
bound on the magnitude squared of the lattice vectors. This analysis can be generalized to lattice vectors whose components
are rational numbers (ratios of integers). Such complexity estimates could in principle be carried over to the PW algorithm.
However, they seem to be of little relevance in the context of this paper since physically-relevant lattices normally do not
admit lattice vectors of rational numbers. Moreover, the analysis would not be helpful even in cases where the components
of the lattice vectors are rational numbers, because there is no apparent connection between the physically-relevant length
and direction of the lattice vectors and the magnitude of the integer numbers involved. Small changes in the lengths or direc-
tions of the real lattice vectors can already lead to highly varying lengths of the involved integer numbers, compare, e.g., 1/2
and 1,000,001/2,000,000. The parameter B appearing in the LLL bound could be very different for these two cases, whereas
the real lattice vector component is almost identical. For this reason, we disregard the topic of complexity estimates here.

3. Nearest lattice site detection

One problem that frequently occurs in many applications is the determination of the lattice site that is nearest to some
given point �x 2 Rd in space, also known as the closest vector problem. An example is mesh generation and mesh refinement
within the QC method, where mesh nodes are constrained to occupy lattice sites. Whenever the initial mesh is computed or
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Fig. 2. Example of a point �x (square) whose nearest lattice site a2 � a1 is not a corner of the unit cell (vectors and dotted lines).

4862 M. Arndt et al. / Journal of Computational Physics 228 (2009) 4858–4880
the mesh is refined by adding nodes during automatic mesh refinement, the nodes must be moved to the nearest lattice site.
The fast determination of nearest lattice sites is therefore essential for an efficient QC implementation.

We begin with a simple lattice L ¼ fAm : m 2 Zdg. Assume we are given an arbitrary point �x ¼ A�n 2 Rd. Here �n 2 Rd, but
in general �n R Zd because �x need not be a lattice site. The problem of detecting the nearest lattice site is to find a lattice site
x ¼ An 2 L that is nearest to �x, i.e.,2
2 The
f ðxÞ is m
x ¼ arg min
x02L

kx0 � �xk: ð12Þ
Equivalently, the problem can be stated as finding n 2 Zd such that
kAn� �xk 6 kAm� �xk for all m 2 Zd: ð13Þ
The nearest lattice site problem becomes trivial if the lattice is spanned by an orthogonal matrix A, i.e., AT A ¼ I, since in
this case
kAn� �xk ¼ kn� A�1�xk; ð14Þ
and n is obtained by solving �n ¼ A�1�x for �n and then rounding each component of �n to the nearest integer, n ¼ roundð�nÞ,
where round() is defined in (10). In particular, the nearest lattice site is always one of the 2d corners of the unit cell contain-
ing �x. This property holds as well if the lattice vectors are only orthogonal, ai � aj ¼ 0 for i–j, but not necessarily normalized,
kaik ¼ 1.

For non-orthogonal lattice vectors, a1; . . . ;ad, this is in general no longer true as can be seen from the following example,
see also Fig. 2. Let
A ¼
1 2
0 1

� �
; �x ¼

1:25
0:55

� �
; �n ¼

0:15
0:55

� �
: ð15Þ
The four corners m ¼ 0
0

� �
;

0
1

� �
;

1
0

� �
, and 1

1

� �
of the unit cell containing �x satisfy kAm� �xk > 0:60415, but the nearest lattice

site, An ¼ 1
1

� �
with n ¼ �1

1

� �
, has kAn� �xk � 0:51479. Thus, the nearest lattice site is not a corner of the unit cell contain-

ing �x, and n cannot be determined simply by rounding.
Note however that the matrix A from (15) can be reduced to an orthogonal matrix by the lattice reduction techniques

discussed in Section 2, which makes the nearest lattice site detection trivial for this particular example. This does not hold
for lattices generated by arbitrary matrices A, but hints that reducing A to some matrix that is as orthogonal as possible can
significantly reduce the computational complexity. Later in this section, we numerically compare the performance of lattice
site detection for unmodified, pairwise reduced, and LLL-reduced lattice vector matrices A.

Let us note that for dimension d ¼ 2, it can be proved that the nearest lattice site is always one of the four corners of the
surrounding unit cell if the matrix A is PW-reduced. In this case, no further strategy beyond length-reducing the matrix and
then checking which one of the four corners is nearest is necessary. For higher dimension d P 3, this is no longer true as can
be shown by counterexamples, and other strategies become necessary.

3.1. Brute-force method

Given any matrix A, either reduced in some sense or not, the naive brute-force approach to determine the nearest lattice
site is to compute the distances to all lattice sites in the vicinity of �x and to take the minimal one. This vicinity needs to be
large enough to ensure that the nearest lattice site is not missed, but should be as small as possible for computational
efficiency.
argmin operator returns the value of the argument for which the specified expression is minimum. Thus, arg minxf ðxÞ returns the value of x at which
inimum.
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In practice, one identifies a corner of the unit cell that contains �x; roundð�nÞ ¼ roundðA�1�xÞ, and then scans a rectangular
set of indices n around this corner, i.e., all n with
3 Her
all poin
jni � roundð�niÞj 6 RbðAÞ ð16Þ
for some bound RbðAÞ. The bound RbðAÞ can be determined as follows:
kn� roundð�nÞk1 6 kn� �nk1 þ k�n� roundð�nÞk1 6 kA
�1k1;2kAðn� �nÞk þ k�n� roundð�nÞk1

¼min
m2Zd
kA�1k1;2kAðm� �nÞk þ k�n� roundð�nÞk1

6 min
m2Zd
kA�1k1;2kAk2;1kðm� �nÞk1 þ k�n� roundð�nÞk1 6

1
2
kA�1k1;2kAk2;1 þ

1
2
; ð17Þ
where knk1 ¼maxijnij is the maximum norm and kAk1;2 and kAk2;1 are operator norms. Note that the operator norms are
defined as the smallest numbers that satisfy
kAvk1 6 kAk1;2kvk and kAvk 6 kAk2;1kvk1 ð18Þ
for all vectors v. We have
kAk1;2 ¼ max
i¼1;...;d

ffiffiffiffiffiffiffiffiffiffiffiffiffiXd

j¼1

A2
ij

vuut ; kAk2;1 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

Xd

j¼1

jAijj
 !2

vuut : ð19Þ
There is no easily computable formula for the exact value of kAk2;1 as there is for kAk1;2, but the upper estimate given here is
sufficient for our application.

Estimate (17) states that the nearest lattice site An fulfills the condition
roundð�niÞ � bRbðAÞc 6 ni 6 roundð�niÞ þ bRbðAÞc ð20Þ
for all components ni of the vector n, where
RbðAÞ :¼ 1
2
kA�1k1;2kAk2;1 þ 1
	 


: ð21Þ
We define the brute-force search range
Rbf :¼ m 2 Zd : �bRbðAÞc 6 mi 6 bRbðAÞc
� �

: ð22Þ
Then the nearest lattice site An is determined by computing the distances kAn� �xk for all n ¼ roundð�nÞ þm with
m 2 Rbf and choosing the one with minimal distance. The corresponding brute-force algorithm is shown in Algorithm 2.

Algorithm 2. Algorithm to detect the nearest lattice site. For the search range, R, we use either R ¼ Rbf (brute-force
method) or R ¼ Rsl (short-list method).
Input: matrix A, point �x, search range R
�n :¼ A�1�x
find minimum of kAn� �xk among all n ¼ roundð�nÞ þm with m 2 R
Output: n
For the 2D lattice given in (15), for example, we have RbðAÞ ¼ 1
2 ð

ffiffiffi
5
p ffiffiffiffiffiffi

10
p

þ 1Þ � 4:036, so bRbðAÞc ¼ 4. Thus, the brute-force
algorithm would have to scan 9� 9 ¼ 81 lattice sites.
3.2. Short-list method

The brute-force approach described in the previous section is reasonable if one only needs to compute the nearest lattice
sites for a few points �x. In many applications, though, this needs to be done for a great many points �x, so it is advisable to
invest some time in a preprocessing step in order to compute a smaller search range. This search range needs to be computed
only once for a given lattice, hence one saves computation time when determining many lattice sites later. We refer to the
new approach that uses the smaller search range as the short-list algorithm.

Consider the lattice site detection technique in Algorithm 2. This algorithm works with indices m ¼ n� roundð�nÞ. Thus,
roundð�nÞ is subtracted from all indices n that are potential candidates for the nearest lattice site. Observe that
�x� A roundð�nÞ 2 A � 1

2 ;
1
2

 �d by construction.3 Hence, the subtraction shifts the search to lattice sites around the origin. The
e ½a; b�d and fa; bgd denote the set of d-vectors with components within the range from a to b or equal to a or b, respectively. Hence, A � 1
2 ;

1
2

 �d is the set of
ts from the unit cell centered around the origin, and A � 1

2 ;
1
2

� �d is the set of all corners of this unit cell.
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key of the short-list method is to find a search range Rsl that contains all lattice sites that are closest to at least one point in
A � 1

2 ;
1
2

 �d. This range does not depend on the actual point �x and can thus be computed in advance for all possible points �x. Once
Rsl is computed, Algorithm 2 with R ¼ Rsl can be applied to any point �x.

The construction of Rsl is based on Voronoi cells and their representation using half-spaces. Careful estimates of the in-
volved terms lead to4
4 8 an
for all m
Rsl ¼ m 2 Rbf : 8m0 2 Rbf ;m0 – m : Af� 1
2 ;

1
2 g

d \Hðm;m0Þ – ;
n o

; ð23Þ
where the half-space Hðm;m0Þ is defined by
Hðm;m0Þ :¼ x 2 Rd : ðx� 1
2 Aðmþm0ÞÞ � Aðm0 �mÞ 6 0

� �
: ð24Þ
The detailed description of the derivation of Rsl is lengthy. The interested reader is referred to Appendix A.2 for the details.
Algorithm 3 shows how to compute Rsl as a preprocessing step.

Algorithm 3. Preprocessing step to determine the search range for the short-list method, Rsl. The command break

terminates the innermost loop.
Input: A
Rsl :¼ ;
compute RbðAÞ from (21) and Rbf from (22)
for all m 2 Rbf
intersect :¼true
for all m0 2 Rbf ;m0–m

corner inside :¼ false
for all c 2 � 1

2 ;
1
2

� �d
if ðc � 1
2 ðm0 þmÞÞT AT Aðm0 �mÞ 6 0

corner inside :¼ true
break

if corner inside ¼ false
intersect :¼false
break

if intersect ¼ true

Rsl :¼ Rsl [ fmg
Output: Rsl
SinceRsl is much smaller than the search range of the brute-force approach,Rbf , determining n becomes much faster. For
example, for the 2D lattice in (15),Rsl contains 13 lattice sites, significantly less than the 81 lattice sites needed for the brute-
force algorithm. In higher dimensions, d P 3, the advantage of the short-list method over the brute-force method becomes
even more significant.
3.3. Performance evaluation

To evaluate the performance of the algorithms discussed so far for d ¼ 3, we measured running times for all six possible
combinations for a sample of 100 randomly-generated matrices A. In each case, the matrix can be left as is, reduced by the
length reduction algorithm, or reduced by the LLL algorithm. Then, the nearest lattice site can be either determined by the
brute-force or short-list algorithms. To avoid excessive running times for the non-reduced matrix, we only considered matri-
ces A for which RbðAÞ 6 20.

Table 1 shows running times for the different components of the respective algorithms. Here the reduction step refers to
PW reduction, LLL reduction or no reduction at all for the matrix A. The setup step comprises the computation of the bound
RbðAÞ and of the search ranges Rbf and Rsl for the brute-force method and for the short-list method, respectively. The find
step refers to the detection the nearest lattice site n for a single point �x. The results show that the reduction step, either PW
or LLL, costs nearly no computation time, but that it greatly reduces the time for the subsequent setup and find operations.
Bearing in mind that the reduction step just needs to be done once for each matrix, it is a clear must. The setup phase of the
short-list method costs additional time because it involves about 2dð2RbðAÞ þ 1Þ2d vector operations, compared with only
d 9 are the universal quantifier (‘‘for all”) and the existential quantifier (‘‘there exists”), respectively. In words, Rsl is the set of all m from Rbf such that
0 from Rbf except for m, there exists a corner x that is contained in the half-space Hðm;m0Þ.



Table 1
Nearest lattice site detection in a simple lattice. Results are for 100 random matrices A 2 R3�3 with RbðAÞ 
 20 and 100,000 random find operations per matrix.
Running times for the individual steps are averages over all tests. The reduction and setup times are performed once for each matrix, so the average is over 100
matrices. The find time is averaged over the 100� 100;000 ¼ 10;000; 000 find operations that were performed. The list size is an average over the 100
matrices. For the short-list method with PW reduction or LLL reduction and for the matrices considered here, the list size is always 17. The total running time is
the time for the full simulation including all steps for all matrices and lattice site detections. Computations were performed on an Intel Core2 Q6600 2.40 GHz
CPU.

Method Reduction Reduction (ls) Setup (ls) Find (ls) Average list size Total (s)

Brute-force None N/A 91.624 66.675 5105.272 666.756
PW 0.171 3.107 2.647 183.192 26.472
LLL 0.301 3.115 2.590 183.745 25.902

Short-list None N/A 302184.812 0.390 24.543 34.121
PW 0.171 2594.212 0.285 17.000 3.113
LLL 0.301 750.859 0.278 17.000 2.857
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ð2RbðAÞ þ 1Þd vector operations for the brute-force method. However, it accelerates the subsequent find operations by a fac-
tor of 9 on average, thus it pays off if many find operations are performed. Based on Table 1, the actual crossover point for
which the short-list algorithm is favorable to the brute-force algorithm is 1098 find operations if PW reduction is used and
324 find operations if LLL reduction is used. The lattice-reduced approaches also have significant storage advantages over the
corresponding unreduced approaches as shown by the list size requirements (i.e., the average number of lattice sites scanned
during a find operation).

Table 1 also shows the total running time for a practical application consisting of 100 different matrices A 2 R3�3 with
100,000 find operations each. Clearly the short-list method for the reduced matrices is best, with LLL slightly faster than
PW. The advantage of the PW approach is that it has a clear geometric significance and is much simpler to implement than
LLL, while being nearly as efficient. The brute-force methods and the non-reduced methods are not competitive.

An important variation of the nearest lattice site detection problem is the restriction to a finite-sized domain, X 	 Rd.
Consider the problem of seeking the lattice site from L \X that is nearest to �x 2 X. If �x is more than 1

2 kAk2;1 away from
the boundary @X of the domain, i.e., distð�x; @XÞ > 1

2 kAk2;1, the nearest lattice site to �x from the infinite lattice L is contained
in X, as can be seen by an estimate similar to (17). Thus the problem does not differ from finding the nearest lattice site from
the full lattice L, and both the short-list method and the brute-force method will find the correct solution. However, within
distance 1

2 kAk2;1 to the boundary, the nearest site from L \X might not be the nearest site from L, and the carefully con-
structed search list for the original problem might miss the correct lattice site.

It is therefore advisable to proceed as follows. First, the nearest lattice site from the full lattice L is determined using the
short-list algorithm. If this lattice site lies within the domain X, we have found the solution. Otherwise, we fall back to
searching from a much larger set, such as the one used in the brute-force method. It is important to note, though, that
the correct result is not guaranteed even for the brute-force method if the domain X is highly irregular. In the worst case,
any site from L \X could be nearest.

In practice, it will not be necessary to revert to the slow brute-force approach too often if the domain X is well-behaved.
Consider, for example, the case of a convex domain X. Then the set of points �x 2 X for which the short-list method possibly
fails has volume 6 1

2 kAk2;1j@Xj, where j@Xj denotes the surface area of X. Thus, the ratio of possibly problematic points to all
points in X is at most 1

2 kAk2;1j@Xj=jXj, where jXj denotes the volume of X. This fraction is small if X is sufficiently large,
hence we still have a quite efficient method.

3.4. Nearest lattice site detection for multilattices

Up to now, we discussed how to detect the nearest lattice site within a simple lattice as given by (1). We now extend this
to multilattices.

A multilattice is a set of S inter-penetrating simple lattices called sublattices.5 The set of lattice sites making up the multi-
lattice is
5 It is
to the t
crystal
multipl
L ¼ fAðnþ maÞ : n 2 Zd;a ¼ 1; . . . ; Sg; ð25Þ
where3 ma 2 ½0;1Þdða ¼ 1; . . . ; SÞ are the positions of the sublattices (also called fractional position vectors) relative to the nom-
inal simple lattice that serves as the scaffolding for the multilattice (sometimes called the ‘‘skeletal lattice”). We say that
each nominal lattice site has S sublattice sites associated with it. Clearly, if S ¼ 1, the multilattice reduces to a simple lattice,
possibly shifted relative to the nominal lattice.
also possible to think of a multilattice structure as a simple lattice with more than one point associated with each lattice site. This interpretation has led
erm lattice with a basis, which is common in the physics literature. In this context, the set of ‘‘points” located at each lattice site is called the basis. For a
structure, the basis corresponds to a set of atoms. If a single atom is placed at each lattice site, the result is a simple crystal structure. If the basis contains
e atoms, the result is a complex or multilattice crystal.
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When applying the nearest lattice site algorithm to the multilattice in (25), it is necessary to account for the fractional
position vectors ma. The objective is to find the lattice site Aðnþ maÞ satisfying
6 The
[4,13–1
kAðnþ maÞ � �xk 6 kAðmþ mbÞ � �xk for all m 2 Zd; b ¼ 1; . . . ; S: ð26Þ
Compare this condition to (13). Obviously
Aðnþ maÞ � �x ¼ An� ð�x� AmaÞ: ð27Þ
Thus, for a single position vector ðS ¼ 1Þ, the problem reduces to the case of a simple lattice where the point �x is replaced by
�x� Am1. For a multilattice with several sublattices, we apply one of the techniques for simple lattices discussed earlier to
each position vector ma, individually. In this manner, we obtain lattice sites Aðna þ maÞ that are nearest to �x among the shifted
simple lattice fAmþ ma : m 2 Zdg. The overall solution to (26) is then obtained by choosing the lattice site Aðna þ maÞwith the
minimal distance to �x among all the sublattices a ¼ 1; . . . ; S.

Note that we have not addressed the important issue of essential versus non-essential descriptions of multilattices [11].
The essential description is the multilattice with the minimal value of S that reproduces the lattice structure. Of course, it is
always possible to represent a simple lattice or a multilattice with S sublattices by another multilattice with larger period-
icity and correspondingly larger S. This is a non-essential description. The algorithms given above will work for non-essential
descriptions, but would be accelerated by using the essential representation. The problem of determining the essential
description for a given multilattice is an important problem that lies outside the scope of this paper. See for example [10]
for a discussion of this issue.

4. Cluster construction

Another important task is to determine all lattice sites that lie within a certain radius r around the origin or a specified
lattice site in a simple lattice or multilattice that have undergone a uniform deformation. The application we encounter most
often is the computation of atomic interactions under a short-range potential.6 In this case, r corresponds to the cutoff radius
rcut of the interaction potential. Since this is the application we have in mind, we will refer to r as the cutoff radius and to the
sphere of radius r as the cutoff sphere.

We consider a multilattice with S inter-penetrating sublattices that are spanned by the column vectors a1;a2; . . . ;ad 2 Rd

of the matrix A 2 Rd�d and which have fractional position vectors ma for a ¼ 1; . . . ; S,
Lref ¼ fAðnþ maÞ : n 2 Zd;a ¼ 1; . . . ; Sg: ð28Þ

The lattice Lref is referred to as the reference configuration. The sublattices undergo a uniform deformation described by the
affine mapping yðxÞ ¼ Fxþ ua, where F 2 Rd�d is a regular matrix and where ua 2 Rd are shift vectors that displace the sublat-
tices relative to each other. In continuum mechanics applications, F is the deformation gradient, which is how we will refer to
it here. The deformed configuration L of the multilattice follows from (28) as
L ¼ fFAðnþ maÞ þ ua : n 2 Zd;a ¼ 1; . . . ; Sg ¼ fFAðnþ saÞ : n 2 Zd;a ¼ 1; . . . ; Sg ¼ fFAnþ da : n 2 Zd;a ¼ 1; . . . ; Sg;
ð29Þ
where sa ¼ ma þ A�1F�1ua and where we refer to da ¼ FAma þ ua as the offset vector of sublattice a.
Two problems are of interest in this context. The first problem is to find all lattice sites ðn;aÞ satisfying
kFAðnþ saÞk 6 r; ð30Þ

i.e., all lattice sites within distance r of the origin. The second problem is to find all lattice sites ðn;aÞ that are within distance
r of a given lattice site ð�n; �aÞ,
kFAðnþ saÞ � FAð�nþ s�aÞk 6 r: ð31Þ

Due to the translation invariance of the infinite lattice, we may set �n ¼ 0 without loss of generality. Thus, the second problem
becomes equivalent to the first one with the sublattice positions replaced by their differences. We therefore have the generic
problem,
kFAðnþ sÞk 6 r; ð32Þ

where s is either sa or sa � s�a. Below, we develop two different algorithms to efficiently determine all n 2 Zd satisfying (32)
for given r > 0 and s 2 Rd. The two problems described above are then solved by repeatedly applying one of these algorithms
to all s ¼ sa with a ¼ 1; . . . ; S (first problem) or to all s ¼ sa � s�a with a; �a ¼ 1; . . . ; S (second problem), respectively. We derive
the methods for multilattices. The case for simple lattices follows as a special case by setting S ¼ 1.

4.1. Algorithms for cluster construction in multilattices

In this section, we derive two methods to solve problem (32): the shell algorithm and the on-the-fly algorithm.
application we have in mind is the calculation of the constitutive response of a multilattice crystalline material using Cauchy–Born kinematics. See, e.g.,
5] for more details.



M. Arndt et al. / Journal of Computational Physics 228 (2009) 4858–4880 4867
4.1.1. Shell algorithm
The shell algorithm is based on iterating over a reference crystallite C that is computed in advance and consists of all lattice

sites in the reference configuration of the nominal lattice lying within a radius Rc of the origin (to be specified later),
C ¼ fAn : n 2 Zd; kAnk 6 Rcg: ð33Þ

The reference crystallite is arranged into shells, where the lattice sites in each shell have the same distance to the origin.
Sorting the shells by this distance allows for an efficient iteration over the lattice sites later.

The setup of the reference crystallite is described in Algorithm 4. The algorithm is passed A;Rc and �, a tolerance setting
the shell thickness. Normally, � will be related to the shell spacing and machine tolerance. In our calculations, which were
performed in double precision, we used � ¼ 10�9. Algorithm 4 is self-explanatory, except for the initial selection of a pool of
lattice sites P from which the reference crystallite is built.

The pool P needs to be sufficiently large to ensure that it contains all indices n 2 Zd with An 2 C, i.e., kAnk 6 Rc. We have
kAnk2 ¼ nT AT An P lminknk
2
; ð34Þ
where lmin is the minimum eigenvalue of AT A. Thus
knk 6 kAnkffiffiffiffiffiffiffiffiffiffilmin
p 6

Rcffiffiffiffiffiffiffiffiffiffilmin
p : ð35Þ
Because knk1 6 knk, we get the conservative bound knk1 6 bRc=
ffiffiffiffiffiffiffiffiffiffilmin
p c. This leads to the easily computable set
P ¼ n 2 Zd : knk1 6 bRc=
ffiffiffiffiffiffiffiffiffiffi
lmin

p
c

� �
: ð36Þ
The reference crystallite only has to be generated once for a given nominal lattice. Normally this does not change during a
simulation. Once generated, it can be used to obtain the list of lattice sites lying within the cutoff radius r of a lattice site in
the deformed multilattice in the following manner.

Algorithm 4. Shell algorithm: Construction of the reference crystallite, C.
Input: A;Rc; �
compute lmin, the minimum eigenvalue of AT A
P :¼ n 2 Zd : knk1 6 bRc=

ffiffiffiffiffiffiffiffiffiffilmin
p c

� �
C :¼ ;
Nc :¼ 0
for all n 2 P
if kAnk 6 Rc

C :¼ C [ fAng
Nc :¼ Nc þ 1

sort C in ascending order based on magnitude. Result: kCð1Þk 6 � � � 6 kCðNcÞk
Rsð1Þ :¼ kCð1Þk
Sð1Þ :¼ ;
shell :¼ 1
for i :¼ 1; . . . ;Nc

R :¼ kCðiÞk
if jR� RsðshellÞj < �

SðshellÞ :¼ SðshellÞ [ fCðiÞg

else

shell :¼ shellþ 1
RsðshellÞ :¼ R
SðshellÞ :¼ fCðiÞg

Output: shells SðjÞ with radii RsðjÞ
Algorithm 5. Shell algorithm: Cluster construction.
Input: F; d, r, shells SðjÞ with radii RsðjÞ from Algorithm 4
compute RiðF; d; rÞ from (39)
j :¼ 1
while RsðjÞ 6 RiðF; d; rÞ

for all x 2 SðjÞ

if kFxþ dk 6 r

output Fxþ d

j :¼ jþ 1
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The basic idea is that given a deformation gradient F and offset vector d, it is possible to map r back to an influence radius
RiðF; d; rÞ in the reference configuration [14,15]. The influence radius is the distance of the nominal lattice site furthest from
the origin (in the reference configuration) that has at least one associated sublattice site that lies inside the cutoff sphere in
the deformed configuration. Since the reference crystallite is sorted into shells, it is straightforward to locate all lattice sites
within the cutoff sphere by only looping over shells with a radius Ri or smaller. The lattice sites associated with the nominal
lattice sites in each shell are mapped to the deformed configuration by applying the deformation gradient and adding on the
offset vector for a given sublattice and retaining those that lie inside the cutoff sphere. The precise procedure is given in
Algorithm 5. The calculation of the influence radius Ri is discussed next.

For a simple lattice, a sphere of lattice sites in the deformed configuration is mapped back to an ellipsoid in the reference
configuration by F�1. In a multilattice, each sublattice is mapped back to an ellipsoid with the center offset by
�F�1daða ¼ 1; . . . ; SÞ due to the sublattice offsets as illustrated in Fig. 3. Our objective is to compute the influence radius
RiðF; dmax; rÞ, which is the distance from the origin to the furthest point on any of the ellipsoids. Thus, Ri is the distance of the
nominal lattice point An that is furthest from the origin and that satisfies the condition kFAnþ dak 6 r for at least one
a 2 f1; . . . ; Sg.

We obtain a bound for this problem as follows. We have
Fig. 3.
origin i
vector
sublatt
marked
sublatt
the stor
are wh
kminkAnk2
6 nT AT FT FAn ¼ kFAnk2

; ð37Þ
where kmin ¼ kminðFT FÞ denotes the smallest eigenvalue of FT F . The bound for multilattices is then obtained by adding on the
sublattice offset,
kAnk 6 kFAnkffiffiffiffiffiffiffiffiffi
kmin
p 6

kFAnþ dak þ kdakffiffiffiffiffiffiffiffiffi
kmin
p 6

r þ kdakffiffiffiffiffiffiffiffiffi
kmin
p : ð38Þ
Hence we choose
RiðF; dmax; rÞ :¼ r þ kdmaxkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kminðFT FÞ

q ; ð39Þ
where dmax is the maximal offset vector,
dmax :¼ db such that kdbkP kdak for all a 2 f1; . . . ; Sg: ð40Þ
Note that this condition has already been given in [15] without rigorously proving its validity.
Influence radius for a two-dimensional multilattice with two sublattices. The right part of the figure shows all lattice sites within distance r of the
n the deformed configuration. One sublattice lies on the deformed nominal lattice sites (h) and the other sublattice (�) is displaced by an offset
d. The two sublattices are mapped back by F�1 to two ellipses in the reference configuration (shown on the left). The ellipse associated with the h

ice is centered on the origin, and the other associated with the � sublattice is shifted by �F�1
d relative to the origin. The center of the offset ellipse is

with a + symbol. The circles on the left frame correspond to the nominal lattice sites. All nominal lattice sites falling inside the ellipses (black) have
ice sites lying inside the cutoff sphere. The influence radius Ri computed for this deformation is shown. The figure also shows the outer radius Rc of
ed crystallite. Any deformation gradient with Ri 
 Rc can be computed. Lattice sites inside the crystallite are shown in gray and lattice sites outside it

ite.
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The radius Rc of the reference crystallite needs to be chosen sufficiently large so that Rc P RiðF; dmax; rÞ for all deformation
gradients to be applied. Alternatively, Rc can be set to a sensible physical value, which can be used to constrain the behavior
of a solver. For example, during an energy minimization in a QC simulation, excessive moves along a search direction can be
detected by the condition Rc < RiðF; dmax; rÞ, alerting the solver that it needs to back up to more physically-reasonable values.

Algorithm 6. Shell algorithm: Cluster construction with PW-lattice reduction. Alternatively, LLL reduction can be used
instead of the pairwise algorithm.
Input: A; F
Apply lattice reduction Algorithm 1 to A. Result:�A
Build crystallite, C, from Algorithm 4 with �A instead of A
For each deformation gradient F:

B :¼ F �A
Apply lattice reduction Algorithm 1 to B. Result: �B
�F :¼ �B�A�1

Apply the shell method in Algorithm 5 with �F instead of F .
Regarding the computational complexity of the shell algorithm, volume considerations show that the number of lattice
points that satisfy the generic problem (32) is about Ngen ¼ rd=jdetðFAÞj for large radii r. Similarly, the number of points
scanned by the shell method is about Nscan ¼ Rd

i =jdetðAÞj ¼ ðr þ kdmaxkÞd= kd=2
minjdetðAÞj

	 

. Thus, the multiplicative overhead

of the shell method is
7 A la
8 The

simply
Nscan

Ngen
¼ ðr þ kd maxkÞd

rd

jdetðFÞj
kd=2

min

: ð41Þ
Here, the ratio jdetðFÞj=kd=2
min measures how much the ellipsoid that contains the points Aðnþ sÞ satisfying (32) deviates from

a ball. For d ¼ 3, e.g., the ratio is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmidk max
p

=kmin, where kmid and kmax denote the middle eigenvalue and the largest eigenvalue
of FT F , respectively. Let us note that these estimates are accurate for large radii r, whereas for small r, the volume approach is
imprecise due to dominating discreteness effects.

The shell method can often be accelerated by applying a lattice reduction procedure to obtain a ‘‘smaller” deformation
gradient by factoring out the lattice-invariant portion of the deformation.7 The procedure involves a setup stage that has
to be done once and an application stage, which is repeated for each deformation gradient.

The setup stage involves the following steps. First, PW or LLL lattice reduction is applied to the reference lattice vectors in
matrix A. This results in an optimized reference lattice given by �A.8 Recall that the reference lattice spanned by �A is the same
as the lattice spanned by A, only the corresponding indices n may differ. Second, the crystallite C is computed with Algorithm
4, where A is replaced by �A. This completes the setup stage.

The application stage involves the following steps. For every deformation gradient F, the deformed lattice B ¼ F �A is lattice
reduced to �B. The corresponding reduced deformation gradient �F follows from the requirement �B ¼ �F �A, thus
�F ¼ �B�A�1: ð42Þ

The shell method in Algorithm 5 is then applied using �F instead of the original deformation gradient F . The approach is out-
lined in Algorithm 6 with PW-lattice reduction. Of course, LLL lattice reduction could be used instead.

The saving in computational time as a result of this algorithm can be significant. For example, if a lattice-invariant shear is
applied to the system, i.e., a shear that leaves the lattice unchanged, then �B ¼ �A and therefore �F ¼ I, which is an optimal
case for the shell method. Timing studies for this example are given in Sections 4.2 and 4.3 for a simple lattice and
multilattices.

4.1.2. On-the-fly algorithm
The second technique is to determine the lattice sites entirely in the deformed configuration. We refer to this method as

the on-the-fly (OTF) algorithm. Rather than looping over lattice sites in the reference configuration and mapping them to the
deformed configuration, the lattice vectors themselves are mapped to the deformed configuration, FA, and the lattice sites
lying within the cutoff sphere are determined on-the-fly by means of d nested loops with certain bounds. The bounds are
chosen carefully to exactly give the correct set of lattice sites, at the cost of some computational overhead to compute these
bounds.

Let
G :¼ AT FT FA 2 Rd�d: ð43Þ
ttice invariant deformation is a deformation that leaves the infinite lattice unchanged.
lattice vectors given in textbooks for physically-relevant crystal structures are normally already reduced. In this case the lattice reduction step would

return �A ¼ A.
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Note that G is symmetric positive definite, provided that both A and F are regular. Then our problem is to identify all n 2 Zd

with
ðnþ sÞT Gðnþ sÞ 6 r2: ð44Þ

To isolate the last component nd of n, we subdivide G;n, and s into blocks as
G ¼
~G g

gT c

" #
; n ¼

~n
nd

� �
; s ¼

~s
sd

� �
ð45Þ
with ~G 2 Rðd�1Þ�ðd�1Þ; g 2 Rd�1; c 2 R; ~n 2 Zd�1;nd 2 Z;~s 2 Rd�1, and sd 2 R. Using this notation, (44) reads as
ð~nþ ~sÞT ~Gð~nþ ~sÞ þ 2ðnd þ sdÞgTð~nþ ~sÞ þ cðnd þ sdÞ2 6 r2; ð46Þ

or equivalently
ffiffiffi
c
p

nd þ
gTð~nþ ~sÞ þ csdffiffifficp

� �2

6 r2 � ð~nþ ~sÞT Ĝð~nþ ~sÞ ð47Þ
with
Ĝ :¼ ~G � g � g
c

; ð48Þ
where g � g is the self dyad of g, which in component form is ðg � gÞij ¼ gigj.
If we treat ~n as known for now, we obtain the condition
�gTð~nþ ~sÞ þ csd

c
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ð~nþ ~sÞT Ĝð~nþ ~sÞ

c

s
6 nd 6 �

gTð~nþ ~sÞ þ csd

c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ð~nþ ~sÞT Ĝð~nþ ~sÞ

c

s
ð49Þ
for the remaining coordinate nd. This inequality gives the bounds for the innermost loop over nd.
After having separated the component nd, we now turn to nd�1. Observe that (47) can only hold if its right-hand side is

non-negative, i.e.,
ð~nþ ~sÞT Ĝð~nþ ~sÞ 6 r2: ð50Þ
Just as G, the matrix Ĝ is symmetric positive definite as well, see Lemma A.3 in the appendix. Hence condition (50) has the
same structure as (44) where the dimensions of the vectors and matrices are d� 1 instead of d and ðd� 1Þ � ðd� 1Þ instead
of d� d, respectively. Thus, the same strategy that was used for G 2 Rd�d and n 2 Zd can be used for Ĝ 2 Rðd�1Þ�ðd�1Þ and
~n 2 Zd�1 to get the second innermost loop over nd�1. This process is continued until we get the outermost loop over n1.

The whole procedure is shown in Algorithm 7. Note that the ranges given for the matrices GðiÞ correspond to the
submatrices ~G; g and c used in the text. This has been done to emphasize that it is not necessary to actually declare variables
for the submatrices, instead it is sufficient and usually faster to just access the corresponding part of GðiÞ. The same holds for
n and s.

Algorithm 7. On-the-fly algorithm: cluster construction.
Input: A; F; s; r
GðdÞ :¼ AT FT FA
for i :¼ d; . . . ;2

Gði�1Þ :¼ GðiÞ1...i�1;1...i�1 � GðiÞ1...i�1;iG
ðiÞ
i;1...i�1=GðiÞi;i
a1 :¼ s1

b1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=Gð1Þ1;1

q
for n1 :¼ d�a1 � b1e; . . . ; b�a1 þ b1c
. . .
ai :¼ GðiÞi;1...i�1ðnþ sÞ1...i�1=GðiÞi;i þ si

bi :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � ðnþ sÞT1...i�1Gði�1Þðnþ sÞ1...i�1Þ=GðiÞi;i

q
for ni :¼ d�ai � bie; . . . ; b�ai þ bic

. . .

ad :¼ GðdÞd;1...d�1ðnþ sÞ1...d�1=GðdÞd;d þ sd

bd :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 � ðnþ sÞT1...d�1Gðd�1Þðnþ sÞ1...d�1Þ=GðdÞd;d

q
for nd :¼ d�ad � bde; . . . ; b�ad þ bdc

output n
Since the OTF method directly obtains the correct set (32) of lattice points, it is faster than the shell method by a factor of
the order of the multiplicative overhead given by (41). The involved constants are larger due to the complex computations of
the bounds, though.
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A minor possible improvement that we do not consider here is the effect of the coordinate system orientation and the
ordering of the loops in Algorithm 7 on the performance of the OTF method. The method would be most efficient if the num-
ber of bounds calculations were minimized. This is achieved if outer loops correspond to spatial directions for which the
bounds are closer together. Clearly,
9 By
nearest
for i :¼ 0; . . . ;2; for j :¼ 0; . . . ;10; . . . ð51Þ

is more efficient than
for j :¼ 0; . . . ;10; for i :¼ 0; . . . ;2; . . . ð52Þ

assuming that the bounds of the inner loop have to be computed each time. The optimal directions can be determined by
computing the principle directions of the deformation. However the cost of doing so would probably offset any gains and
was not done here.

4.2. Timing results for simple lattices

In this section timing results for simple lattices are presented to assess the efficiency of the methods discussed above: the
shell method (S) given in Algorithm 5, the shell method with PW-lattice reduction (S + PW) given in Algorithm 6, and the OTF
method given in Algorithm 7. The reference configuration for the calculations shown here is a three-dimensional simple cu-
bic lattice with a normalized lattice parameter a ¼ 1, so that
A ¼
1 0 0
0 1 0
0 0 1

2
64

3
75: ð53Þ
To explore the dependence of the methods on the cutoff radius r, three different radii are tested: r ¼ 1:0, 1.732, 3.126, cor-
responding to a 1st (1-NN), 3rd (3-NN), 9th (9-NN) neighbor model.9 The models contain respectively 7, 27, 147 lattice sites in
the reference configuration (including the lattice site at the origin). The normalized reference crystallite radius used in the shell
method S is set to be Rc ¼ 20, selected to be large enough for all investigated deformations.

In our timing analysis two types of deformations with deformation gradient F are applied to the reference configuration:
simple shear and uniaxial stretch. This choice is motivated by the QR decomposition theorem, see, e.g., [12]. According to this
theorem, any matrix F can be factorized as F ¼ QR, where the first factor, Q, is an orthogonal matrix corresponding to rota-
tion and reflection, and the second factor, R, is an upper triangular matrix. Furthermore, the upper triangular matrix, R, can
be written as a product R ¼ DS of a diagonal matrix, D, representing a stretch deformation, and an upper triangular matrix
with unit diagonal, S, representing a shear deformation. Rotations and reflections do not change the actual structure of the
lattice. Thus, shear and stretch deformations are two prototypical deformations from which all other deformations can be
constructed. The deformation gradients for simple shear and uniaxial stretch along the x-direction are given by
F ¼
1 c 0
0 1 0
0 0 1

2
64

3
75 and F ¼

k 0 0
0 1 0
0 0 1

2
64

3
75; ð54Þ
respectively. Here c and k are the dimensionless shear and stretch parameters that set the magnitude of the deformation.
We begin with the simple shear deformation. We provide timing results for the range c 2 ½0:0;2:5� to explore how the

magnitude of shear affects the performance of the methods. In order to measure CPU time accurately, the cluster construc-
tion procedure is repeated 106 times and the total CPU time is recorded, then CPU time per cluster is calculated. The timing
results are shown in Fig. 4. The total computation times as functions of the applied shear c are plotted for the three methods
being considered (S, S + PW, OTF) and the three different model sizes (1-NN, 3-NN, 9-NN) associated with different cutoff
radii r. It is striking that OTF and S + PW are insensitive to the magnitude of the applied shear for all three model sizes, while
S is strongly affected by it. In OTF this is due to the fact that the shear happens to be optimally oriented for the loop ordering
in the OTF algorithm (see Section 4.1.2) so that the number of bounds that are computed does not increase with c. In S + PW,
the reason is that an infinite lattice that is sheared along a crystallographic direction will periodically revert back to its ori-
ginal structure. The shears for which this occurs are called lattice-invariant shears as explained earlier. When lattice reduc-
tion is applied to a lattice invariant shear, the calculation time is the same as if the lattice were unsheared. This accounts for
the zigzag shape of the S + PW curve; an effect that becomes more noticeable with increasing model size.

The result of the fact that S is sensitive to the magnitude of c, while OTF and S + PW are not, is that for each model size
there is a crossover point below which method S is optimal and above which OTF and S + PW are superior. Below the
crossover, the overhead associated with the calculation of bounds for OTF and lattice reduction for S + PW offset the resulting
gain of checking less lattice sites. The actual position of the crossover depends on computational cost of the overhead relative
to the number of lattice sites being sampled. Comparing the three graphs in the figure, we note that the crossover shear
an nth-neighbor model, we mean a choice of cutoff radius that in the reference configuration contains all lattice sites up to and including the nth
-neighbor shell of lattice sites to the origin.
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reduces with increasing model size. For a 1-NN model, the crossover shear is c ’ 1:5, for a 3-NN model it is c ’ 0:6, and for a
9-NN model it is c ’ 0:2. The fact that the crossover shear is reducing with increasing model size is a consequence of the
slightly better scaling properties of OTF and S + PW relative to S. The conclusion is that the choice of the optimal method
depends on the model size and the typical shears that are expected in the application. However, since for a physical system
the crossover shears measured above would be considered large, method S may be the optimal choice for simple lattices in
practical applications.



25.115.0
λ

0

0.2

0.4

0.6

0.8

C
PU

 ti
m

e 
(μ

se
c)

OTF
S+PW
S

1-NN

0.5 1 1.5 2
λ

0

1

2

3

4

C
PU

 ti
m

e 
(μ

se
c)

OTF
S+PW
S

3-NN

0.5 1 1.5 2

λ

0

5

10

15

20

C
PU

 ti
m

e 
(μ

se
c)

OTF
S+PW
S

9-NN

Fig. 5. Cluster construction in simple lattices undergoing uniaxial stretch. The time required to find all lattice sites within a given cutoff radius of the origin
as a function of the applied stretch k. Three different radii are considered corresponding to a nearest-neighbor mode (1-NN), third-neighbor model (3-NN),
and ninth-neighbor model (9-NN).

M. Arndt et al. / Journal of Computational Physics 228 (2009) 4858–4880 4873
Next, we turn to uniaxial stretch deformations. We explored stretches in the range k 2 ½0:4;2:0�. The results of the timing
study for uniaxial stretch are shown in Fig. 5. As for simple shear, three different models were tested on three different model
sizes. The total computation time as a function of k is plotted. We note that all method are insensitive to stretch for k > 1 but
require more time as k decreases below one. The reason is that for k < 1 the lattice is compressed and more lattice sites are
entering the cutoff sphere, whereas for k > 1 the lattice is stretched and the number of lattice sites in the cutoff sphere is
reduced. The entrance of new lattice sites into the cutoff sphere is particularly clear in the 1-NN model where such events
are accompanied by large discontinuous jumps in the computation time. For larger model sizes the effect is smeared out by
the more continuous entry of lattice sites into the cutoff sphere with compression.



Table 2
Cluster construction in randomly deformed simple lattices. Running times for the individual steps involved in finding all lattice sites within the cutoff sphere for
a 5-NN model. Times are averages over 100 randomly-generated deformation gradients with Ri 
 20. Computations were performed on an Intel Core2 Q6600
2.40 GHz CPU.

Method Setup (ls) Reduction (ls) Construction (ls)

OTF N/A N/A 2.06
S 2718.92 N/A 30.74
S + PW 2718.92 0.48 2.30
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Similar to the case of simple shear, no single method is best for all model sizes and stretch parameters k. In this case,
lattice reduction does not save CPU time, since for the uniaxial stretch deformation the distorted lattice FA is already re-
duced. For this reason the S + PW curves are always above the S curves with the difference equal to the time required for
the PW algorithm. The performance of the remaining two methods, S and OTF, depends on the model size. For the near-
est-neighbor model (1-NN), the shell method S is most efficient. However, as the model size increases OTF becomes more
competitive. For the third-neighbor model (3-NN), method S still remains the optimal choice except under very large com-
pression ðk < 0:6Þwhen OTF outperforms it. For the ninth-neighbor model (9-NN), OTF outperforms S over most of the defor-
mation range except near the undeformed state ð0:8 < k < 1:2Þ.

The timing studies described so far consider idealized cases involving shear or stretch deformations separately. As a final
test for simple lattices, we consider the more general case of randomly-generated deformation gradients. One hundred ran-
dom matrices with an influence radius Ri 6 20 are generated to sample different possible combinations of shear and stretch
deformations. The cutoff radius is set to include five nearest-neighbor shells (5-NN). The results are tabulated in Table 2
where the time necessary to setup the shells and the average times for lattice reduction and for cluster construction are
shown. As can be inferred from the table, the setup stage of the shell methods takes an appreciably large amount of time
compared to the time necessary to construct the cluster, while the lattice reduction time is relatively insignificant. Of course,
the setup stage only needs to be performed once for a given lattice and is therefore normally inconsequential. Note that the
efficiency of OTF and S+PW is comparable with only a slight advantage for OTF, while method S is not competitive.

4.3. Timing results for multilattices

In this section, we discuss the efficiency of methods S, S + PW, and OTF when applied to multilattices. The nominal lattice
is the same cubic lattice used in the previous section. We apply the same shear and stretch deformations to the multilattice
as described in the preceding section for simple lattices and examine the performance of the three methods for various mod-
el sizes. Our calculations indicate that the methods are insensitive to the number of sublattices. We therefore only present
results for multilattices with two sublattices (2-lattices). To make our timing studies independent of the particular choice of
the sublattice positions, the latter are chosen at random, and the timing results reflect the average over a set of many mul-
tilattices obtained in this manner. We determined that a set of 600 randomly distributed samples were sufficient to obtain a
converged average. The scatter about the average is displayed in the following graphs as error bars. To accurately measure
the CPU time every cluster construction is repeated 104 times.

The timing results for the simple shear deformation are displayed in Fig. 6. Note that in contrast to simple lattices, OTF is
the most efficient method for any model size and any shear parameter c. The second best method is S + PW. The additional
computational cost for lattice reduction pays off by considerably decreasing the CPU time relative to method S, especially for
large values of c. As before, this is due to lattice-invariant shears. The zigzag form of the S + PW curve resulting from this is
particularly clear here.

In addition to being the fastest method, OTF also has the advantage that the scatter due to sublattice positions is minimal.
In contrast, both S and S + PW exhibit large scatter. This is due to a noticeable variation in the number of shells that are taken
into account for large c. The number of shells and the influence radius Ri, see (39), depends on the sublattice positions, and
therefore varies appreciably when the sublattice positions are sampled at random.

Fig. 7 show the results for uniaxial stretch. The timing results S + PW are not displayed since lattice reduction does not
reduce CPU time just as in the case of simple lattices. The conclusions for this deformation are the same as for simple shear.
OTF is the most efficient method for cluster construction for any model size and any stretch parameter k. The scatter due to
sublattice positions remains minimal for OTF, whereas it is significant for method S.

Finally, we consider the general case of randomly-generated deformation gradients. One hundred random matrices with an
influence radius RiðF; dmax; rÞ 6 20 are generated to sample different possible combinations of shear and stretch deformations.
The cutoff radius is set to include five nearest-neighbor shells (5-NN). The results are tabulated in Table 3 where the time nec-
essary to setup the shells and the average times for lattice reduction and for cluster construction are shown. The conclusions
regarding the setup and reduction times are the same as for simple lattices described earlier. The main conclusions are that
OTF outperforms S + PW by about a factor of two on average and that method S without lattice reduction is not competitive.10
10 As noted earlier, tests performed on multilattices with larger numbers of sublattices do not change our conclusions. OTF remains the most efficient method
for multilattices regardless of the number sublattices.
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5. Conclusions

We have presented a set of efficient algorithms for performing several tasks related to computations involving simple lat-
tices and multilattices, namely lattice reduction, detection of nearest lattice sites, and computation of clusters of nearest
neighbors. The performance of the algorithms was numerically studied for prototypical test cases that are relevant for the
simulation of crystalline solids.
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We discussed two algorithms for lattice reduction: LLL reduction and pairwise reduction. Both compute an optimized set
of lattice vectors that are used to speed up subsequent algorithms. The LLL algorithm leads to an approximate global opti-
mum in terms of the orthogonality of the lattice vectors, whereas the pairwise algorithm results in a set of lattice vectors that
are pairwise shortest and most orthogonal. The pairwise algorithm is far easier to implement than LLL and performs nearly as
well. In addition, the clear physical significance of the resulting pairwise reduced lattice vectors is an advantage.



Table 3
Cluster construction in randomly deformed 2-lattices. Running times for the individual steps involved in finding all lattice sites within the cutoff sphere for a 5-
NN model. Times are averages over 100 randomly-generated deformation gradients with RiðF; dmax; rÞ 6 20. Statistics is collected over 600 samples with
randomly positioned sublattices. Computations were performed on an Intel Core2 Q6600 2.40 GHz CPU.

Method Setup (ls) Reduction (ls) Construction (ls)

OTF N/A N/A 17:33� 0:8
S 2719.34 N/A 147:53� 16:9
S + PW 2719.34 6:3� 0:1 39:24� 5:8
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The next problem studied was the detection of the nearest lattice site to a specified arbitrary point in space. We explored
two approaches: a naive brute-force algorithm and a new short-list algorithm. The brute-force algorithm is based on scan-
ning over a (possibly large) set of lattice sites that is guaranteed to contain the desired site. In contrast, the short-list algo-
rithm dramatically reduces the set of candidate lattice sites by performing a preprocessing step. The preprocessing step is
computationally expensive, however it needs to performed only once and it greatly reduces the overall computation time
in situations where many detection operations on the same lattice are performed.

The final problem studied was the computation of nearest-neighbor clusters. This involves the detection of all lattice
sites within a given radius of specified lattice point for both simple lattices and multilattices. Two methods were devel-
oped and explored: the shell algorithm and the on-the-fly algorithm. The shell algorithm is based on checking a set of
candidates from a pre-computed sorted crystallite, whereas the on-the-fly algorithm provides loops that directly provide
the required set of lattice sites at the cost of computing complex loop bounds. The performance of the shell method is
greatly improved if the lattice is reduced in advance. For simple lattices that are not too deformed the shell method is
favorable, whereas for more heavily deformed simple lattices and for multilattices, the on-the-fly method outperforms
it by a factor of two on average.

We conclude that the choice of the optimal algorithm for a certain lattice task highly depends on the setting and the prob-
lem data. Even an apparently simple approach, such as the brute-force algorithm for nearest lattice site detection, can be
superior to more advanced methods in certain situations. It is therefore essential to estimate the expected problem data
for the respective application in advance and then to choose the appropriate algorithm.

The tasks we dealt with in this paper only represent a small subset of tasks that are frequently encountered during lattice
computations. One example is the determination of the essential unit cell for a multilattice, i.e., given an arbitrary multilat-
tice description, to find an optimized description of the multilattice where the number of fractional position vectors is small-
est and their lengths are shortest. Another common task is given a triangulation where the nodes are lattice sites, to find the
cell that contains an arbitrary specified lattice site. An efficient algorithm would exploit the underlying lattice structure to
speed up the search compared to classical approaches like oct-tree methods for triangulations with arbitrary nodes. How-
ever, these tasks and others are beyond the scope of this paper.
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Appendix A

Several proofs have been omitted in the text in order not to interrupt the flow by too many technical details. We make up
for this now.

A.1. Pairwise lattice reduction

First we start with two properties from Section 2 regarding length reduction and angle reduction.

Lemma A.1. Let ai;aj 2 Rd be two linearly independent vectors. If ai is length-reduced by aj, that is
kai �majkP kaik ðA:1Þ
for all m 2 Z, then ai is angle-reduced to aj as well, i.e., ai is the vector among all ai �maj whose angle with aj is closest to 90� or p
2

in radians,
\ðai �maj;ajÞ �
p
2

��� ��� P \ðai;ajÞ �
p
2

��� ��� ðA:2Þ
for all m 2 Z.
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Proof. Because
cos\ðai �maj;ajÞ ¼
jðai �majÞ � ajj
kai �majkkajk

; ðA:3Þ
we need to show that (A.1) is equivalent to
jðai �majÞ � ajj
kai �majkkajk

P
jai � ajj
kaikkajk

ðA:4Þ
for all m 2 Z. Squaring and multiplying out the terms gives that (A.4) is equivalent to
ðai � ajÞ2 � 2mðai � ajÞkajk2 þm2kajk4
	 


kaik2 P ðai � ajÞ2 kaik2 � 2mðai � ajÞ þm2kajk2
	 


: ðA:5Þ
Rearranging terms leads to
�2mðai � ajÞ þm2kajk2
	 


kaik2kajk2 � ðai � ajÞ2
	 


P 0: ðA:6Þ
The second factor on the left side of the inequality is always positive because ai and aj are linearly independent. Therefore
(A.6) is equivalent to
�2mðai � ajÞ þm2kajk2 P 0: ðA:7Þ
Adding kaik2 to both sides shows that (A.7) is equivalent to (A.1). h

Lemma A.2. If some longer vector al 2 Rd is length-reduced by some shorter vector as 2 Rd, i.e., kalk � kask and
kal �mask � kalk for all m 2 Z, then the shorter vector as is automatically length-reduced by the longer vector al as well, i.e.,
kas �malk � kask for all m 2 Z.

Proof. We have that
kas �malk2 � kask2 ¼ �2mðas � alÞ þm2kalk2 P �2mðas � alÞ þm2kask2 ¼ kal �mask2 � kalk2 P 0: � ðA:8Þ
A.2. Search range for short-list method

Next, we come to the derivation of the search range, Rsl, for the short-list method described in Section 3.2. Recall that Rsl

consists of (at least) all lattice sites that are closest to at least one point in A � 1
2 ;

1
2

 �d. The search range,Rsl, needs to be deter-
mined in a preprocessing step.

The key to this preprocessing step are Voronoi cells, also referred to as Wigner–Seitz cells in physics. The Voronoi cell VðnÞ
of some lattice point An is defined as
VðnÞ :¼ x 2 Rd : kAn� xk 6 kAm� xk 8m 2 Zd
� �

; ðA:9Þ
i.e., the set of all points x to which An is the closest lattice point. It can be shown that VðnÞ is the intersection
VðnÞ ¼
\

m2Zd ;m–n

Hðn;mÞ ðA:10Þ
of half-spacesHðn;mÞ defined by (24). Note that the half-spaceHðn;mÞ contains An and is bounded by the plane that is per-
pendicular to the line from An to Am and that goes through the midpoint of An and Am. The construction of the Voronoi cell
from half-spaces is illustrated in Fig. A.1. For a detailed characterization and classification of Voronoi cells and a Voronoi
reduction algorithm, see [3].

Using Voronoi cells, the optimal search range can be characterized as the set of all n 2 Zd for which at least one point
�x 2 A � 1

2 ;
1
2

 �d is contained in VðnÞ, i.e., �x 2 VðnÞ. In other words, the optimal search range is the setRopt of lattice points whose
Voronoi cells intersect with the region A½� 1

2 ;
1
2 �

d,
Ropt ¼ m 2 Zd : A½� 1
2 ;

1
2 �

d \ VðmÞ – ;
n o

: ðA:11Þ
A calculation similar to (17) shows that all m 2 Ropt satisfy kmk1 6 RbðAÞ, or equivalently, m 2 Rbf , where Rbf is defined in
(22). Thus,
Ropt ¼ m 2 Rbf : A½� 1
2 ;

1
2 �

d \ VðmÞ– ;
n o

; ðA:12Þ
which limits the set of possible m to a finite number.



Fig. A.1. Voronoi cell, VðnÞ, and its construction from half-spaces, Hðn;mÞ.
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Since Voronoi cells are expensive to compute, we determine a superset Rsl of Ropt that is faster to compute but not much
larger in practice. From the description (A.10) of the Voronoi cell from half-spaces, we have
Ropt ¼ m 2 Rbf : 9x 2 A½� 1
2 ;

1
2�

d
: x 2 VðmÞ

n o
¼ m 2 Rbf : 9x 2 A½� 1

2 ;
1
2�

d8m0 2 Zd;m0–m : x 2 Hðm;m0Þ
n o

: ðA:13Þ
Just as for m, we also restrict the set of indices m0 2 Zd in the condition above to a finite set, m 2 Rbf . This way, the condition
above gets less strict, and we enlarge the set Ropt ,
Ropt 	 m 2 Rbf : 9x 2 A½� 1
2 ;

1
2�

d8m0 2 Rbf ;m0–m : x 2 Hðm;m0Þ
n o

: ðA:14Þ
The crucial step is to relax the condition that a single point, x, is contained in all half-spaces Hðm;m0Þ. By exchanging the
order of the existential quantifier, 9, and the universal quantifier, 8, we allow for a different point x for each lattice point m0.
This way, we get the estimate Ropt 	 Rsl where
Ropt 	 m 2 Rbf : 9x 2 A½� 1
2 ;

1
2�

d8m0 2 Rbf ;m0 – m : x 2 Hðm;m0Þ
n o

	 m 2 Rbf : 8m0 2 Rbf ;m0 – m 9x 2 A½� 1
2 ;

1
2�

d
: x 2 Hðm;m0Þ

n o
¼: Rsl: ðA:15Þ
Whenever the half-space Hðm;m0Þ contains a point x 2 A½� 1
2 ;

1
2 �

d, it always contains at least one corner of A½� 1
2 ;

1
2 �

d, i.e., one
element of Af� 1

2 ;
1
2 g

d. Thus, we have
Rsl ¼ m 2 Rbf : 8m0 2 Rbf ;m0 – m 9x 2 Af� 1
2 ;

1
2g

d
: x 2 Hðm;m0Þ

n o
¼ m 2 Rbf : 8m0 2 Rbf ;m0 – m : Af� 1

2 ;
1
2g

d \Hðm;m0Þ– ;
n o

; ðA:16Þ
which is precisely the definition (23) of Rsl in Section 3.2. Note that (A.16) is based on a finite number of possible vectors
m;m0 and corner points x that need to be checked against each other by the half-space condition, x 2 Hðm;m0Þ. This makes
the search range actually computable. See Algorithm 3.

A.3. On-the-fly method for cluster computation

Finally, we come to a property used in the on-the-fly algorithm for cluster computation in Section 4.1.2.

Lemma A.3. Let
G ¼
~G g

gT c

" #
2 Rd�d ðA:17Þ
with ~G 2 Rðd�1Þ�ðd�1Þ; g 2 Rd�1; c 2 R be a symmetric positive definite matrix. Then
Ĝ :¼ ~G � g � g
c
2 Rðd�1Þ�ðd�1Þ ðA:18Þ
is symmetric positive definite as well.

Proof. Ĝ is symmetric by definition. We need to show that ~xT Ĝ~x > 0 for any given non-zero vector ~x 2 Rd�1. Define
x :¼
~x
n

� �
2 Rd with n :¼ � gT ~x

c
2 R: ðA:19Þ
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Then x–0, and xT Gx > 0 because G is positive definite. We thus have
~xT Ĝ~x ¼ ~xT ~G~x� ðg
T ~xÞ2

c
¼ ~xT ~G~xþ 2ngT ~xþ cn2 ¼ xT Gx > 0; ðA:20Þ
thus Ĝ is positive definite. h
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